Quantitative Variation in Responses to Root Spatial Constraint within Arabidopsis thaliana.
نویسندگان
چکیده
Among the myriad of environmental stimuli that plants utilize to regulate growth and development to optimize fitness are signals obtained from various sources in the rhizosphere that give an indication of the nutrient status and volume of media available. These signals include chemical signals from other plants, nutrient signals, and thigmotropic interactions that reveal the presence of obstacles to growth. Little is known about the genetics underlying the response of plants to physical constraints present within the rhizosphere. In this study, we show that there is natural variation among Arabidopsis thaliana accessions in their growth response to physical rhizosphere constraints and competition. We mapped growth quantitative trait loci that regulate a positive response of foliar growth to short physical constraints surrounding the root. This is a highly polygenic trait and, using quantitative validation studies, we showed that natural variation in EARLY FLOWERING3 (ELF3) controls the link between root constraint and altered shoot growth. This provides an entry point to study how root and shoot growth are integrated to respond to environmental stimuli.
منابع مشابه
Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation.
Root architecture is a highly plastic and environmentally responsive trait that enables plants to counteract nutrient scarcities with different foraging strategies. In potassium (K) deficiency (low K), seedlings of the Arabidopsis (Arabidopsis thaliana) reference accession Columbia (Col-0) show a strong reduction of lateral root elongation. To date, it is not clear whether this is a direct cons...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملNatural Variation in Arabidopsis thaliana Revealed a Genetic Network Controlling Germination Under Salt Stress
Plant responses to environmental stresses are polygenic and complex traits. In this study quantitative genetics using natural variation in Arabidopsis thaliana was used to investigate the genetic architecture of plant responses to salt stress. Eighty seven A. thaliana accessions were screened and showed a large variation for root development and seed germination under 125 and 200 mM NaCl, respe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2015